Municipal wastewater treatment and greenhouse gas emission reduction in Latin America and the Caribbean

Adalberto Noyola
Instituto de Ingeniería, UNAM

Science and Policy on Short-Lived Climate Forcers
Technical Workshop
September, 9-10, 2001
Mexico City
Introduction

• Wastewater treatment in Latin America is still limited; less than 20% of sewage receive some kind of treatment

• This is a clear indicator of the need to invest in this sector

• Wastewater treatment generates environmental impacts and contributes to the emission of Greenhouse gases.
Introduction

• It is necessary to identify wastewater treatment systems with lower environmental impact.

• It is particularly important to identify technological processes that may have a low carbon footprint to help mitigate climate change in Latin America and the Caribbean.

• The evaluation of these technologies will support the process of decision making and investments that promote sustainable development.
On April 2010 we started a three year project, funded by the IDRC (International Development Research Council) of Canada.

Goal (conceptual):

Evaluate the environmental impacts of the most representative water treatment technologies in Latin America and the Caribbean in order to identify mitigation strategies.

Specific goals (+):

- To develop an inventory of treatment technologies in LAC.
- To generate representative treatment scenarios of LAC.
- To identify the technical and economic characteristics of representative scenarios.
- To assess the environmental impacts of treatment scenarios with emphasis on the quantification of GHG through Life Cycle Assessment (LCA).
- To identify research topics in order to minimize environmental impact and GHG generation for the identified (improved) wastewater treatment technologies.
- WWTP inventory for six countries of LAC
Treatment technologies inventory for LAC:

Methods

- The information obtained for WWTP in LAC was collected from official agencies, organizations and WWTP operators through a consultant engineer in each selected country.

- WWTP Sample Inventory by country, according to:
 - Categorization of cities by population size.
 - Data base template:
 - General Format
 - Specifics Formats:
 - Wastewater quality
 - Sludge, biosolid and solid waste
 - Emissions and Odour control
 - Costs
Inventory of treatment technologies in LAC

Used technologies

- Brazil: 82 WWTP
- Chile: 177 WWTP
- Colombia: 153 WWTP
- Guatemala: 32 WWTP
- Mexico: 1,693 WWTP
- Dominican Republic: 32 WWTP

WWTP samples in six countries selected in LAC: 2,169

The 4 most used technologies, cover 83% of the total sample of WWTP

<table>
<thead>
<tr>
<th>Technologies</th>
<th>No. Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilization Ponds</td>
<td>866</td>
</tr>
<tr>
<td>Activated Sludge</td>
<td>671</td>
</tr>
<tr>
<td>Wetland</td>
<td>208</td>
</tr>
<tr>
<td>Trickling Filters</td>
<td>137</td>
</tr>
<tr>
<td>Imhoff Tank</td>
<td>115</td>
</tr>
<tr>
<td>Anaerobic Reactor</td>
<td>83</td>
</tr>
<tr>
<td>Primary Treatment</td>
<td>55</td>
</tr>
<tr>
<td>Advanced Primary</td>
<td>33</td>
</tr>
<tr>
<td>Biological</td>
<td>16</td>
</tr>
<tr>
<td>Compact Plant</td>
<td>14</td>
</tr>
<tr>
<td>Dual</td>
<td>10</td>
</tr>
<tr>
<td>Aerobic</td>
<td>10</td>
</tr>
<tr>
<td>Submerged filter</td>
<td>5</td>
</tr>
<tr>
<td>Anaerobic filter</td>
<td>4</td>
</tr>
<tr>
<td>SBR</td>
<td>4</td>
</tr>
<tr>
<td>Outfall</td>
<td>2</td>
</tr>
<tr>
<td>Aerated Reactor</td>
<td>2</td>
</tr>
<tr>
<td>IC</td>
<td>1</td>
</tr>
<tr>
<td>Anaerobic digestor</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
- The septic tank was not considered as technology for the treatment.
- WWTP that reported combined processes (two technologies) were counted independently.
Inventory of treatment technologies in LAC:

Most used technologies in the selected countries

By country:
- Brazil: Stabilization Ponds, Activated Sludge, Wetland, Trickling Filters
- Chile: Activated Sludge, Stabilization Ponds
- Colombia: UASB, Wetland
- Guatemala: Stabilization Ponds, Activated Sludge, Wetland
- Dominican Republic: UASB, Wetland
- Mexico: Trickling Filters

Percentage distribution for each technology across the selected countries.
- Methane in wastewater treatment plants
Biochemical reactions of interest in wastewater treatment

• Aerobic conditions

\[C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O \]

• Anoxic conditions: Nitrate reduction (Denitrification)

\[2NO_3^- + 2H^+ \rightarrow N_2 + 2.5O_2 + H_2O \]

• Anaerobic conditions: Sulfate reduction

\[CH_3COOH + SO_4^{2-} + 2H^+ \rightarrow H_2S + 2H_2O + 2CO_2 \]

• Anaerobic conditions: CO\(_2\) reduction (Hydrogenotrophic Methanogenesis)

\[4H_2 + CO_2 \rightarrow CH_4 + 2H_2O \]

• Anaerobic conditions: Acetotrophic methanogenesis

\[CH_3COOH \rightarrow CH_4 + CO_2 \]
Origin of atmospheric methane

<table>
<thead>
<tr>
<th>SOURCES OF METHANE EMISSIONS</th>
<th>CONTRIBUTION (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy production (natural gas)</td>
<td>26</td>
</tr>
<tr>
<td>Enteric fermentation</td>
<td>24</td>
</tr>
<tr>
<td>Rice agriculture</td>
<td>17</td>
</tr>
<tr>
<td>Landfills</td>
<td>11 *</td>
</tr>
<tr>
<td>Biomass burning</td>
<td>8</td>
</tr>
<tr>
<td>Wastes</td>
<td>7 *</td>
</tr>
<tr>
<td>Municipal wastewater</td>
<td>7 *</td>
</tr>
</tbody>
</table>

* Sum of residues: 25 %

IPCC (1994)
Identificación de las principales fuentes de olores en plantas de tratamiento

8 % 5 % 17 % 14 % 5 % 6 % 26 % 15 % 4 %
Two pathways for biological degradation

- **Anaerobic**
 - 100% (COD)
 - Organic Matter
 - Methane + Carbon Dioxide (90%)
 - Cells (10%)

- **Aerobic**
 - Oxygen (O₂)
 - Water + Carbon Dioxide (35%)
 - Energy Dissipation (35%)
 - Cells (65%)
The anaerobic difference

Wastewater

<table>
<thead>
<tr>
<th>Aerobic</th>
<th>Effluent (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wastewater</td>
<td>X Biomass</td>
</tr>
<tr>
<td>Required energy</td>
<td>1 kWh/kg COD$_{rem}$</td>
</tr>
</tbody>
</table>

Biogas production

<table>
<thead>
<tr>
<th>Aerobic</th>
<th>Effluent (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wastewater</td>
<td>0.2X Biomass</td>
</tr>
<tr>
<td>Biogas production</td>
<td>3 kWh/kg COD$_{rem}$</td>
</tr>
<tr>
<td>1 kWh/kg COD$_{rem}$ (elect.)</td>
<td></td>
</tr>
</tbody>
</table>
Carbon Balance
(aerobic vs anaerobic)
Carbon Balance (1)

Organic carbon
0.375 kgC/kgCOD_i

Aerobic

CO₂
0.264 kgCO₂/kgCOD_{rem}
(1.375 kgCO₂/kgCOD_{s ox})

Effluent
0.037 kgC/kgCOD_i

0.265 kgC/kgCOD_{rem}
Y=0.5 kgSSV/kgCOD_{rem}

Digested sludge
0.159 kgC/kg COD_{rem}
E= 40%

Anaerobic Digestor

Biogas production
0.198 kgCO₂/kgCOD_{rem}
0.072 kgCH₄/kgCOD_{rem}
(0.687 kgCO₂/kgCOD_{s.met})
0.25 kgCH₄/kgCOD_{s.met})

Supernatant

Process emissions
0.462 kgCO₂/kgCOD_{rem}
0.072 kgCH₄/kgCOD_{rem}
Eq. CO₂: 1.974 kgCO₂/kgCOD_{rem}

Burning biogas
0.660 kg CO₂/kgCOD_{rem}

Total emissions (Power generation)
1.005 kgCO₂/kg COD_{rem}
Y=0.96 kgCO₂/kWh
60% kWh autogenerated
Carbon Balance (2)

Anaerobic industrial wastewater treatment

Biogas Production
- 0.453 kg CO$_2$/kg COD$_{rem}$
- 0.165 kg CH$_4$/kg COD$_{rem}$
 (0.687 kg CO$_2$/kg COD$_s$ met)
- 0.25 kg CH$_4$/kg COD$_s$ met

Process emissions
- Eq. CO2: 3.918 kg CO2/kg COD$_{rem}$
- Burning biogas: 0.906 kg CO$_2$/kg COD$_{rem}$
- With power generation: -0.054 kg CO$_2$/kg COD$_{rem}$

Y = 0.96 kg CO$_2$/kWh
E = 0.33

Organic Carbon
- 0.375 kg C/kg COD

0.075 kg C/kg COD
Y = 0.1 kg SSV/kg COD$_{rem}$

Effluent
- 0.053 kg C/kg COD$_{rem}$
Summary table for Carbon balance

<table>
<thead>
<tr>
<th>Process</th>
<th>Process emissions (\text{kgCO}2/\text{kgCOD}{\text{rem}})</th>
<th>Process emissions (\text{kgCH}4/\text{kgCOD}{\text{rem}})</th>
<th>Total process emissions (Eq. (\text{CO}_2)) (\text{kgCO}2/\text{kgCOD}{\text{rem}})</th>
<th>Burning Biogas (\text{kgCO}2/\text{kgCOD}{\text{rem}})</th>
<th>Total emissions (Power Generation) (\text{kgCO}2/\text{kgCOD}{\text{rem}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA+DA</td>
<td>0.462</td>
<td>0.072</td>
<td>1.974</td>
<td>0.660</td>
<td>1.005</td>
</tr>
<tr>
<td>DA</td>
<td>0.453</td>
<td>0.165</td>
<td>3.918</td>
<td>0.906</td>
<td>-0.054</td>
</tr>
</tbody>
</table>
Considerations for wastewater with low COD concentration

• Municipal wastewater (COD below 1000 mg/L)

 ➢ The net production of methane is limited

 (0.1 a 0.22 m³CH₄/kg COD rem vs 0.35m³CH₄/kg COD rem)

 ➢ Approximately 30 to 50% of methane is dissolved in the effluent

 ➢ Loss of energy and emission of GHG with significant global warming potential (21 times that of CO₂)
CO$_2$ emissions based on influent BOD concentration

Cakir y Stenstrom, 2005)
Final comments
Final comments

• In Latin America and the Caribbean, stabilization ponds, activated sludge, UASB reactors and trickling filters are the most widely used wastewater treatment processes

• The tool for the Environmental Life Cycle Analysis will allow to suggest region’s own data to international LCA databases as well as GHG emission factors consistent with our technological reality in the field

• The anaerobic path is a sustainable option for the treatment and use of organic waste
 – Low Energy consumption
 – Net energy production
 – Less GHG emission factors (when biogas is used)
Final comments

• The main disadvantage in anaerobic treatment is the methane fraction that leaves as dissolved gas and it is released to the atmosphere.

• There is still a long way to go for this option to be accepted.

• The Kyoto Protocol and CDM can promote the acceptance of this technology.