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O3 PM2.5

Forecast Skill By Region Of NOAA’s                   
Ozone And PM2.5 Predictions
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Operational Testing



  

Discrete Forecast / Evaluation  

Observed  vs.  Forecast  Max. 8 hr. Concentration

Evaluation

n OBS 
(ppb)

MOD 
(ppb)

RMSE 
(ppb)

NME (%) MB 
(ppb)

NMB 
(%)

r

2007 99132 49.0 53.2 13.0 20.4 4.2 8.7 0.70

2008 99343 47.6 51.6 12.6 20.3 4.0 8.4 0.67

CONUS Forecasts for the Summer (J, J, A)

Example of strict grid-cell 
to monitor matching

Eder et al., 2009



  

The statistics below are based on using all 8 monitors in the Charlotte MSA with 
the monitors matched directly with their grid cell.

Charlotte MSA
Ozone (ppb) for all Monitors
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Current Evaluation Approach

Period:  1 May – 30 Sept. 2007
n = 1207

MB  = 2.1 ppb;  1MB = 3.3%

RMSE = 12.0 ppb;  1ME = 16.8%

r = 0.63

Eder et al., 2009



  

The statistics below are based on the max. of the 8 monitors and the max. of 8 grid 
cells in the Charlotte MSA, where monitors are not matched with their grid cell.

Modified Evaluation Approach - Step 1

Charlotte MSA
Maximum Ozone (ppb) of all 8 Monitor and 8 Grid Cells
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FCPeriod:  1 May – 30 Sept. 2007

n = 153

MB  = -0.8 ppb;  1MB -1.1%

RMSE = 10.5 ppb;  1ME = 11.8%

r = 0.73

Eder et al., 2009



  

The statistics below are based on the maximum of the 8 monitors and maximum 
of all 103 model grid cells in the Charlotte MSA, where the monitors are not 
matched with their grid cell.

Modified Evaluation Approach - Step 2

Charlotte MSA
Maximum Ozone (ppb) of all 103 grid cells and 8 monitors
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FCPeriod:  1 May – 30 Sept. 2007

n = 153

MB  = 3.1 ppb;  1MB = 4.4%

RMSE = 11.0 ppb;  1ME = 13.1%

r = 0.74

Eder et al., 2009



  

Evaluation Adaptation

This modified, somewhat more relaxed evaluation approach results in 
“improved” statistics when compared to the more rigid observation vs. 
grid cell approach.  

 ●  We will demonstrate this approach using both:

                     [O3]                AQI

Eder et al., 2009



  

We can take the last approach and convert the concentrations to A4I values.

Modified Evaluation Approach - Step 3

Period:  1 May – 30 Sept. 2007
n = 153

MB  = 6.7;  1MB = 9.3%

RMSE = 22.0;  1ME = 25.1%

r = 0.74

Eder et al., 2009



  

• Category Hit Rate:

      where i  is the A4I index (1, 2, 3, 4, 5) category or 

the color scheme (green, yellow, orange, red, purple), and 
 

      is the forecast instances in the i th category and        

      is the number of observed instances in the i th category.
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• Exceedance Hit Rate:

where N fo is the number of both observed and forecast 

exceedances (A4I ≥ 3), No is the number of observed, but not 

forecast exceedances.
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• Exceedance False Alarm Rate:

where Nf is the number of forecast but not observed 

exceedances (A4I  ≥ 3), Nfo is the number of both 

observed and forecast exceedances.
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NAQFC Categorical Performance vs.  Human Forecast

Eder et al., 2009



  

NAQFC Performance compared with Human Forecast*

                                              Summer 2007

*   Provided by 1C Department of Environmental and 1atural Resources

1 r MB 1MB RMSE 1ME

Human* 150 0.75 -0.05 -0.14 21.07 21.53

1A4FC 153 0.74 6.7 9.3 22.0 25.1

Eder et al., 2009



  

Human

1A4FC

Exceedance Hit Rate                                  Exceedance False Alarm Rate

NAQFC Categorical Performance vs. Human Forecast

Because the NAQFC is positively biased, it tends to capture a higher percentage of
exceedance hit rates, but this also results in a higher percentage of false alarm rates.

Eder et al., 2009
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DC8

C130

DC8          C130

Current CTMs Do Have 
Appreciable Skills In 

Predicting A Wide Variety Of 
Parameters                         

INTEX B – STEM Forecasts

Intensive field experiments provide 
opportunities for comprehensive evaluations



  

Ensemble Forecasting of Air Quality 
 OZONE

* Persistence                          
    * Single Forward Model w/o 
assimilation                            
    * Ensemble forecast (8 models) 
w/o assimilation (further 
improvements with bias corrections 
based on obs)

McKeen et al., JGR, 2005



  

NEAQS-
2004

TexAQS
-2006

Ensemble Forecast Evaluation During Major Field Experiments              
                                               PM2.5 Remains a Challenge

McKeen et al., JGR, 2005 & 2009

O3

PM2.5



  

Regional-Scale Chemical Analysis for Air Quality Modeling:  
A Closer Integration Of Observations And Models 

Improved:
• forecasts
• science
• field experiment design
• models 
• emission estimates
• S/R relationships

Improved:
• forecasts
• science
• field experiment design
• models 
• emission estimates
• S/R relationships

Optimal analysis state

Chemical kinetics

Aerosols

CTM

Emissions

Observations
Data 

Assimilation

Transport
Meteorology



  

Data assimilation methods
• “Simple” data assimilation methods

– Optimal Interpolation (OI)
– 3-Dimensional Variational data assimilation 

(3D-Var)
– Kriging

• Advanced data assimilation methods
– 4-Dimensional Variational data assimilation 

(4D-Var)
– Kalman Filter (KF) - Many variations, e.g. 

Ensemble Kalman Filter (EnFK)



  

Challenges in chemical data assimilation
• A large amount of variables (~300 concentrations 

of various species at each grid points)
– Memory shortage (check-pointing required)

• Various chemical reactions (>200) coupled 
together (lifetimes of species vary from seconds 
to months) 
– Stiff differential equations 

• Chemical observations are very limited, 
compared to meteorological data
– Information should be maximally used, with least 

approximation 

• Highly uncertain emission inventories
– Inventories often out-dated, and uncertainty not well-

quantified



  

Assimilation of MODIS AOD to Produce 
Constrained Fields for Climate Calculations

Chul et al., JGR, 2005

How to optimally adjust individual 
aerosol quantities given AOD (sulfate, 
BC, OC, dust, sea salt)? 

- AOD by itself not unique

- Fine mode fraction helps

- SSA gives info to adjust abs vs scat. 
 

W - Assimilation

w/o -      “

Technique: Collins, W. D., et al. (2001),, JGR, 106, 7313-7336 

Adhikary et al., 2007,2008



  

Total PM2.5  Mass at HCO
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Impact of Daily MODIS Assimilation on 
Predicted PM 2.5 at HCO

Adhikary et al., 2007,2008

Start of assimilation



  

ARW-WRF/Chem and the Gridpoint Statistical Interpolation 
(GSI) Analysis System (3dVar)
Now building a 4dvar system

Grell et al., 2009

O3

PM2.5

Bias RMSE R

Forecast period

Control



  

Assimilation of ICARTT Ozone 
Observations  -- Assessing Information 

Content



  

w/o assimilation with assimilation

Ozone 
predictions

Example July 20, 2004

Region-mean profile

Assimilation Produces An Optimal State Space

Chai et al., JGR 2007

w/o 
assimilation

the importance of measurements above the surface!

with

Information below 4 km 
most important



  

Ensemble-based chemical data assimilation 
techniques can complement the variational tools

• Motivation:
– Ensemble-based d.a. generate a statistical sample of analyses
– Optimal state estimation applied to each member
– Can deal effectively with nonlinear dynamics
– Explicitly propagate (approximations of) the error statistics
– Complement variational techniques

• Issues:
– Initialization of the ensemble
– Rank-deficient covariance matrix  

• Contributions:
– Models of background error covariance
– Calculation of TESVs for reactive flows
– Targeted observations using TESVs
– Ensemble-based assimilation results



  

Challenges for reanalysis and forecasting appear to be 
different …. 4D-var and EnKF show promise for reanalysis

Sandu et al., Quart. J. Roy. Met. Soc, 2007



  

Challenges for reanalysis and forecasting appear to be 
different …. 4D-var and EnKF show promise for reanalysis 

but more work is needed to impact forecasts

Sandu et al., QJRMS, 2007



  

Advanced Data Assimilation Techniques Provide Data 
Fusion and Optimal Analysis Frameworks

miny ψ y( )= y − yb

B−1

2
+ H ⋅ M (y) − o

R−1

2

Current knowledge

of the state
Model information consistent 

with physics/chemistry

Observations information 
consistent with reality

Example 4dVar: 
Cost function

The system is very under-determined – need to combine 
heterogeneous data sources with limited spatial/temporal information



  

Estimation of B and O critical           

1MC method (B)

• Substitute model 
background errors with 
the differences between 
24hr, 48 hr, 72 hr 
forecasts verifying at the 
same time

• Calculate the model 
background error 
statistics in three 
directions separately

• Equivalent sample number: 811,890



  

1MC method results

Vertical correlation Horizontal correlation

l=2.5km
l=270m



  

Observational error

Observational Error:

• Representative error

• Measurement error

Observation Inputs

• Averaging inside 4-D grid cells

• Uniform error (8 ppbv)



  

Li et al., Atmos. 
Env., 2007

In AQ Predictions Emissions Are A Major Source Of 
Uncertainty – Data Assimilation Can Produce Optimal 

Estimates (Inverse Applications)



  

Rapid Updates of Emissions Are 1eeded

Scaling 
factors



  

Physiography,
forest mapping

Aerobiological
observations

Many Meteorological Services Already Supply 
Operational Chemical Weather Products (e.g., FMI)

Satellite
observations

Phenological
observations SILAM

A4 model EVALUATIO1:
1RT model-measurement 

comparison

Aerobiological
observations

Meteorological
 data: ECMWF

Online A4
monitoring

Phenological
models

Fire Assimilation
System

HIRLAM
1WP model

Final AQ products

U1-ECE CLRTAP/EMEP
emission database Real-time data 

needs!

Assimilation



  



  

Section 13
Developing a 

Forecasting Program
Understanding Users’ 1eeds

Understanding the Processes that Control Air 
4uality

Choosing Forecasting Tools
Data Types, Sources, and Issues

Forecasting Protocol
Forecast Verification
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