Chemical Weather — A New Challenge/Opportunity
For Weather And Other Services

Evolving complexity of observing systems, models, and applications.

GLOBAL: climate change

Tomorrow will be fine and sunny
-with moderate to heavy air pollution

AIRGUALITY FORECAST-
MELBOURNE

REGIONAL:

facid rain,
dospheric ozone,
ols, greenhouse gases
5 g

health effects _

LOCAL: )
air pollution

What air quality services can and
should be provided?

WMO: GAW Urban Research
Meteorology and Environment
Project -- GURME



w Air Quality Forecast Capability
___ End-to-End Operational Capability

Model Components: Linked humerical
prediction system

Operationally integrated on NCEP’s supercomputer
*«  NCEP mesoscale NWP: WRF-NMM

+  NOAA/EPA community model for AQ: CMAQ
Observational Input:

. NWS weather observations; NESDIS fire locations
. EPA emissions inventory

Gridded forecast guidance products

. On NWS servers: www.weather.gov/aq and ftp-servers
. On EPA servers

. Updated 2x daily
Verification basis, near-real time:

. Ground-level AIRNow observations
. Satellite smoke observations

Customer outreach/feedback
’ State & Local AQ forecasters coordinated with EPA

. Public and Private Sector AQ constituents
. Website monitoring

Slide provided by Paula Davidson




Fraction Correct

Forecast Skill By Region Of NOAA’s
Ozone And PM2.5 Predictions

Fraction Correct: By Region
8-hr Average Ozone Predictions

Two Week Average: plotted at end of two-week period
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Evaluation

Discrete Forecast / Evaluation

Observed vs. Forecast Max. 8 hr. Concentration

Example of strict grid-cell
fo monitor matching

CONUS Forecasts for the Summer (J, J, A)

n OBS | MOD | RMSE |[NME (%)] MB | NMB | r

(ppb) | (ppb) | (PpPDb) (ppb) | (%)
2007 | 99132 | 490 | 53.2 | 13.0 | 204 | 42 | 87 | 0.70
2008 | 99343 | 476 | 516 | 126 | 203 | 40 | 84 | 0.67

Eder et al., 2009




Current Evaluation Approach

The statistics below are based on using all 8 monitors in the Charlotte MSA with

the monitors matched directly with their grid cell.
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Modified Evaluation Approach - Step 1

The statistics below are based on the max. of the 8 monitors and the max. of 8 grid
cells in the Charlotte MSA, where monitors are not matched with their grid cell.
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Modified Evaluation Approach - Step 2

The statistics below are based on the maximum of the 8 monitors and maximum
of all 103 model grid cells in the Charlotte MSA, where the monitors are not
matched with their grid cell.
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Evaluation Adaptation

This modified, somewhat more relaxed evaluation approach results in
“improved” statistics when compared to the more rigid observation vs.
grid cell approach.

e We will demonstrate this approach using both:
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Modified Evaluation Approach - Step 3

We can take the last approach and convert the concentrations to AQI values.

Charlotte MSA
Air Quality Index

250 1

200

150

NAQFC

Period: 1 May — 30 Sept. 2007
n=153

MB =6.7; NMB =9.3%

RMSE = 22.0; NME = 25.1%

100 150 200 250
r= O . 74 Observation

Eder et al., 2009



NAQFC Categorical Performance vs. Human Forecast

. N,
Category Hit Rate: cH, =

1 i
obs

where i is the AQl index (1, 2, 3, 4, 5) category or

the color scheme (green, yellow, orange, red, purple), and
Air Quality Index

N} is the forecast instances in the i " category and -

Ni 200

obs

is the number of observed instances in the j " category.

o
@
o

N,
N, +N,

where N, is the number of both observed and forecast 5°
1

Forecast
w

Exceedance Hit Rate: eHd =

N
o
o

exceedances (AQIl =2 3), N, is the number of observed, but not
forecast exceedances.

0 50 100 150 200 250
Observation

N
Exceedance False Alarm Rate: eFAR =——1

N,+N,

where N.is the number of forecast but not observed
exceedances (AQIl 2 3), N, is the number of both
observed and forecast exceedances.

Eder et al., 2009



NAQFC Performance compared with Human Forecast

Summer 2007
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" Provided by NC Department of Environmental and Natural Resources

Eder et al., 2009



NAQFC Categorical Performance vs. Human Forecast

Exceedance Hit Rate

100

80

G0

eH (%)

40

20

0

Atlarta  Charlotte  Dallas

DC

Houston

Human

I NAQFC

Exceedance False Alarm Rate

100

80

60

eFAR (%)

40

20

0

Houston

Atlarta  Charlotte  Dallas DC

Because the NAQFC is positively biased, it tends to capture a higher percentage of
exceedance hit rates, but this also results in a higher percentage of false alarm rates.

Eder et al., 2009



National AQF Capability:
Next Steps

Expanding Ozone and Smoke Nationwide
+ Development of AK, HI capabilities; target operational implementation in FY10

- Smoke from large fires: experimental testing in AK, HI

« Setting the groundwork for PM: closer coupling of AQ with NAM;
treatments/resolution, horizontal boundary conditions...

tu:-:;l':-l‘ﬂ bt} Ll-IT.I Sy ‘l-i h'li'.-lh".‘ll‘m l:ll
Increasing Emphasis on Particulate matter components: - o ﬁ: . : n -

+ Additional components for quantitative PM forecast capability: .— fine

— Objective satellite products for verification (ongoing) particles

— Aerosols from anthropogenic source emissions in inventones: continued PM
developmentfiesting/analysis— testing advanced chemical mechanisms 25

— Dust prediction
— Chemical data assimilation, speciated fire emissions, closer coupling of weather and AQ simulation

« Integrated quantitative PM capability:
— Developmental and expenmental testing, to begin FY12
— Target operational implementation for initial PM forecasts, NE US: FY14
— Full Operational Capability, per FY09 Pres. Bud: FY15

Further ahead:
« Extend forecast range to Day 2 and beyond
* Include other pollutants of interest

Slide provided by Paula Davidson




Intensive field experiments provide
opportunities for comprehensive evaluations Current CTMs Do Have

R Tt S Appreciable Skills In

Predicting A Wide Variety Of
Parameters

INTEX B — STEM Forecasts
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Ensemble Forecasting of Air Quality
OZONE

ik

* Persistence
* Single Forward Model w/o

assimilation

/ * Ensemble forecast (8 models)

w/o assimilation (further

improvements with bias corrections
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Ensemble Forecast Evaluation During Major Field Experiments
PM2.5 Remains a Challenge
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Regional-Scale Chemical Analysis for Air Quality Modeling:

A Closer Integration Of Observations And Models

Transport

] Optimal analysis state
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Data assimilation methods

* “Simple” data assimilation methods
— Optimal Interpolation (Ol)

— 3-Dimensional Variational data assimilation
(3D-Var)

— Kriging
* Advanced data assimilation methods

— 4-Dimensional Variational data assimilation
(4D-Var)

— Kalman Filter (KF) - Many variations, e.qg.
Ensemble Kalman Filter (EnFK)



Challenges in chemical data assimilation

* Alarge amount of variables (~300 concentrations
of various species at each grid points)
—  Memory shortage (check-pointing required)

* Various chemical reactions (>200) coupled
together (lifetimes of species vary from seconds
to months)

—  Stiff differential equations

* Chemical observations are very limited,
compared to meteorological data

— Information should be maximally used, with least
approximation

* Highly uncertain emission inventories

— Inventories often out-dated, and uncertainty not well-
quantified



Assimilation of MODIS AOD to Produce
Constrained Fields for Climate Calculations

AOD on APR 2, 2005 without DA-OI

How to optimally adjust individual
aerosol quantities given AOD (sulfate,
BC, OC, dust, sea salt)?

- AOD by itself not unique
- Fine mode fraction helps

- SSA gives info to adjust abs vs scat.

Technique: Collins, W. D., et al. (2001),, JGR, 106, 7313-7336
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Impact of Daily MODIS Assimilation on
Predicted PM 2.5 at HCO
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ARW-WRF/Chem and the Gridpoint Statistical Interpolation
(GSI) Analysis System (3dVar)

Results

O3: next day 8-hr average maximum concentration, Aug 12-30, 2006
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Now building a 4dvar system
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Assimilation of ICARTT Ozone
Observations -- Assessing Information
Content

48 )
\/& Observations Description
46 w AIRNOW EPA surface stations, hourly averaged data used
i y DC3 Vertical profile of ozone mixing ratio from lidar
44 - )
i MOZ-FN MOZAIC, Frankfurt-New York flight
% 42 - MOZ-NF MOZAIC, New York-Frankfurt flight
E is
'ﬁ P3 NOAA P3-B measurement
-
AIRMAP UV SPECTROSCOPY measurement at 4 sites
DC3 ) T ~ ~ ~ . T - ~ . - . -
DC8 DC8-In NASA In Situ Ozone via Nitric Oxide Chemiluminescence
M_FN
L‘:I?:NF DC8-Li DC-8 Composite Tropospheric Ozone Cross-Sections
@ AIRMAP i . J i }
A RHODE RHODE Ozonesonde/Radiosonde data from Narragansett, RI
¥  RONBR
34 85 80 75 0 65 RONBR | Ozonesonde/Radiosonde data from the R/V Ronald H. Brown

Longitude



Assimilation Produces An Optimal State Space

the importance of measurements above the surface!

w/o assimilation with assimilation

predictions
B
Example July 20, 2004
2 - = Case 9
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Ensemble-based chemical data assimilation
techniques can complement the variational tools

— Ensemble-based d.a. generate a statistical sample of analyses
— Optimal state estimation applied to each member

— Can deal effectively with nonlinear dynamics

— Explicitly propagate (approximations of) the error statistics

— Complement variational techniques

— Initialization of the ensemble
— Rank-deficient covariance matrix

— Models of background error covariance
— Calculation of TESVs for reactive flows
— Targeted observations using TESVs
— Ensemble-based assimilation results



Challenges for reanalysis and forecasting appear to be
different .... 4D-var and EnKF show promise for reanalysis

Simulation and data assimilation method R? (RMS) ]

analysis
Best guess zolution, no agsinulation 0.24(22.1)
EnKF (50 members) “noiseless application” 0.38 (18 2) ]
EnKF (200 members) “noizeless application” 0.49 (16.3) | 7 @
EnKF (50 members) adaptive multiplicative mtlation 0.67(12.7) | H R 4
EnKF ( 200 members) adaptive multiplicative mflation | 0.82 (9.36) | H‘
LEnKF (50 members), “noiseless application” 0.81 (9.79) U 805 =
LEnKF (50 members) adaptive multiplicative inflation | 0.82 (9.52) o e e
LEnKF (50 members), “noigeless”. 0.88 (7.75) | AT o mﬂ% .

. . . - .. qure 1: Ground measuring stations (a) in support of the ICARTT campaign (340 in total),
Jomt assimilation of state, emizsions, and lateral 3 ) et sations 1) vo cronsondes (51, 2)ad the gt path of P e
b mmclm‘}-' conditions it will be used for the numerical results /validation illustration.

LEnKF (50 members) adaptive multiplicative inflation. | 0.91 (6.52) |
Jomt aggimilation of state, emisgions, and lateral
boundary conditions

TABLE 2. Model-observations agreement (R* and RMS [ppbv]) for the EnKF data assimilation of only the

state and of the joint state (ST), emissions (EM) and lateral boundary conditions (BC) parameters. Visible

improvements in both the analysis and the forecast are obtained by adjusting the emissions and lateral boundary
conditions.

Sandu et al., Quart. J. Roy. Met. Soc, 2007



Challenges for reanalysis and forecasting appear to be
different .... 4D-var and EnKF show promise for reanalysis
but more work is needed to impact forecasts

Simulation and data assimilation method R? (RMS) R* (RMS)
analysis forecast
Best guess solution, no assimilation 2 (22.1) 0.28 (23.5)
4D-Var 50 iterations w/ AR background 52 (16.0) 0.29(22.4)
EnKF (50 members) “noigeless application” 0 38 (18.2) 0.30(23.1)
EnKF (200 members) “noiseless application” 0.49(16.3) 0.30(23.7)
EnKF (50 members) adaptive multiplicative inflation 0.67(12.7) 0.19 (62.0)
EnKF ( 200 members) adaptive multiplicative inflation | 0.82 (9.36) 0.28 (37.6)
LEnKF (50 members), “noiseless application” 0.81(9.79) 0.34 (22.0) N R R W
LEnKF (50 members) adaptive multiplicative mtlation 0.82 (9.52) 0.34 (22.0) () ICARTT gromnd sations ) st s
LEnKF (50 members), “noiseless”. 0.88 (7.75) 0.42(20.3) e 1 Grond messrng o o) nsuport ofthe IOARTT campaigs (340 ot
Joint azgimilation of state, emissions, and lateral nd (b) selecte tations (#ea-4), w0 ozonesondes (31, 52) aud the fight path of  P3 plane
I.) oun d'ﬂl"‘\-" coil (liti ons hat will be used for the numerical results/validation illustration.
LEnKF (50 members) adaptive multiplicative mtlation. | 0.91 (6.52) 0.40 (20.5)
Joint aggimilation of state, enmggions, and lateral
boundary conditions

TABLE 2. Model-observations agreement (R and RMS [ppbv]) for the EnKF data assimilation of only the

state and of the joint state (ST), emissions (EM) and lateral boundary conditions (BC) parametess. Visible

improvements in both the analysis and the forecast are obtained by 'I{l]lla[]l]g the emissions and lateral boundary
conditions.

Sandu et al., QJRMS, 2007



Advanced Data Assimilation Techniques Provide Data
Fusion and Optimal Analysis Frameworks

70

i
80 i /A
50

Model %_{ Observations

03 (ppbw)
3

Example 4dVar:

Cost function

min, ¢ (y)=]y - y°[.. +H M (y) - o2

10 RS L L i L
2% 25 26 30

Current knOWledge Model information consistent Observations information
with physics/chemistry consistent with reality
of the state

The system is very under-determined — need to combine
heterogeneous data sources with limited spatial/temporal information



Estimation of B and O critical

NMC method (B)

: CORR(03,C0O) = — _EOS : €CO _
* Substitute model Vo, ~€0; - VEco - €co
background errors with B [ 7 [ [ a

cav. -03 02 -0 0 01 02 03 04 05 06 0.7 08 09

the differences between
24hr, 48 hr, 72 hr

forecasts verifying at the I
same time

120

ox}
[

Species index
(53]
[}

* Calculate the model
background error
statistics in three
directions separately

I
[

[
[

20 40 B0 80 100 120
Species index

e Equivalent sample number: 811,890



Correlation coefficient

NMC method results

Vertical correlation
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Latitude
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Observational error

co — Cb]T B! Co — ) +

Ozone (ppbv): 10 20 30 40 50 60 70 80 90

[y = h(c)]" O [y — h(o)]

Observational Error:
* Representative error

* Measurement error

rYe ¢

O

Observation Inputs
* Averaging inside 4-D grid cells
* Uniform error (8 ppbv)



In AQ Predictions Emissions Are A Major Source Of
Uncertainty — Data Assimilation Can Produce Optimal
Estimates (Inverse Applications)

- - Ty, A posteriori prediction
~
y B\ y=M(E)
/ Ey e
i . i @ %Jobs
| EB / YB=M(EB) Observation
\ Background Emissiory A priori prediction
N 7
" —_—— - -

g
Altituds fm)

Con ngini'y
- f; [}

2k}

GMT [houwr)

Fig. 15. Optimal mercury emission scaling factors obtained using the 4D-Var ap- Li et al., Atmos.
proach and the mercury measurements on board the C-130 during the Ace-Asia Env.. 2007
experiment. Results are for a month-long assimilation window (April 2001). 7



Rapid Updates of Emissions Are Needed

We are developing new approaches to integrate satellite data
with chemical transport models and emission inventories for
improved AQM

surface, 7/20 met
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Many Meteorological Services Already Supply
Operational Chemical Weather Products (e.g., FMI)

Satellite

observations

—
R

Phenological

observations

— 0 @O0
v

Aerobiological

< observations <
v

Physiography,

forest mapping
v

UN-ECE CLRTAR |
emission database

Final AQ products

Phenological.

EVALUATION:
NRT model-measurement
comparison

Assimilation

HIRLAM
NWP model

T <
Aerobiological Online AQ
observations monitoring

Real-time data
needs!

Meteorological
data: ECMWF
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Phased Testing for Transition to (_:gj
-~

Phased Testing

Research
Does the science work?

¥

Developmental Testing
Does it work with

operational systems?

¥

Experimental Testing

Does it meet deployment
readiness criteria?

Operations

¥

Deploy into Operations

Key S&T Tests
0, -- Summer 2007

More advanced PBL
mixing in CMAQ
(CB05)

PBL mixing (ACMZ) in
CMAQ, CA off-road
emissions, dry
deposition upgrades

NAM and emissions
data updates; Plume
rise correction




Section 13
Developing a
Forecasting Program

Understanding Users’ Needs

Understanding the Processes that Control Air
Quality

Choosing Forecasting Tools

Data Types, Sources, and Issues
Foreca<tina Protocol
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