WRF/Chem

Química atmosférica básica Descripción de la química de WRF/Chem

Rainer Schmitz

GURME Air Quality Modeling forLatin American Air Qulity Cities Project

Agosto 2009

DEPARTAMENTO DE GEOFISICA – FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS – UNIVERSIDAD DE CHILE

Literatura

Química gaseosa

Gery, W.G., G.Z. Whitten, J.P. Killius, and MC. Dodge, 1989, *A Photochemical Mechanism for Urban and Regional Scale Computer Modeling*, J. Geophys. Res, Vol. 94, No. D10, pp. 12,925-12,956

Stockwell, R.W., P. Middleton, and J. Chang, 1990, *The Second Generation Regional Acid Deposition Model Chemical Mechanisms for Regional Air Quality Modeling*, J. Geophys. Res, Vol. 95, No. D10, pp. 16,343-16,367

Stockwell, R.W, F. Kirchner, and M. Kuhn, 1997, A new mechanism for regional atmospheric chemistry modeling, *Journal of Geophysical Research. D. (Atmospheres)*, 102, 15847-25879.

Zaveri R.A., and L.K. Peters. 1999: A New Lumped Structure Photochemical Mechanism for Large-Scale Applications. *Journal of Geophysical Research. D. (Atmospheres)*,104,30387-30415.

Fotólisis

Madronich, S., 1987: Photodissociation in the atmosphere, 1, actinic flux and the effects of ground reflections and clouds. J. of Geophys. Res., 92, 9740–9752.

Madronich, S. and S. Flocke, 1998, The role of solar radiation in atmospheric chemistry, in Handbook of Environmental Chemistry (P. Boule, ed.), Springer_Verlag, Heidelberg, pp. 1-26.

Barnard, J.C., E.G. Chapman, J.D. Fast, J.R. Schmelzer, J.R. Schlusser, and R.E. Shetter, 2004: An evaluation of the FAST-J photolysis model for predicting nitrogen dioxide photolysis rates under clear and cloudy conditions. *Atmos. Environ.*, 38, 3393-3403.

Literatura

Aerosoles

Binkowski, F.S. and U. Shankar, 1995, *The Regional Particulate Matter Model, 1: Model description and preliminary results*, J. Geophys. Res, Vol. 100, No. D12, pp. 26,191-26,209

Ackermann, I.J, H. Hass, M. Memmesheimer, A.Ebel, F.S. Binkowski, and U. Shankar, 1998, *Modal Aerosol Dynamics Model for Europe: Development and first application*, Atmos. Environ., Vol. 32, No. 17, pp. 2981-2999

Schell, B., I.J. Ackermann, H. Hass, F.S. Binkowski, and A. Ebel, 2001, *Modeling the formation of secondary organic aerosol within a comprehensive air quality model system*, J. Geophys. Res, Vol. 106, No. D22, pp.28,275-28,293.

Zaveri, R.A., R.C. Easter, J.D. Fast, and L.K. Peters, 2005: MOSAIC: Model for simulating aerosol interactions and chemistry. *J. Geophys. Res.*

La abundancia del ozono en la tropósfera depende de los NOx:

 $NO_2 + hv \rightarrow NO + O (\lambda < 424 \text{ nm})$ $O + O_2 \rightarrow O_3$ $NO + O_3 \rightarrow NO_2 + O_2$

No hay producción de ozono

DEPARTAMENTO DE GEOFISICA – FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS – UNIVERSIDAD DE CHILE

El radical hidroxilo OH

• Se produce a través de la fotólisis de O₃

 $O_3 + h\nu \to O(^1D) + O_2 ~(\lambda < 320 \text{ nm})$

 OH inicia la oxidación de un rango amplio de compuestos atmosféricos.

- También se refiere al OH como "detergente atmosférico".
- Es muy reactivo y su reciclaje es muy eficiente.

Oxidación de CO

 $CO + OH \cdot \rightarrow CO_2 + H \cdot$ $H \cdot + O_2 + M \rightarrow HO_2 \cdot + M$ $NO + HO_2 \cdot \rightarrow NO_2 + OH \cdot$ $NO_2 + h\nu \rightarrow NO + O$ $O + O_2 + M \rightarrow O_3$

 $CO + 2O_2 + hv \rightarrow CO_2 + O_3$

Producción de O₃

Terminación del ciclo

$$OH_{\bullet} + NO_2 \rightarrow HNO_3$$
$$HO_2 \bullet + HO_2 \bullet \rightarrow H_2O_2$$

 HNO_3 y H_2O_2 pueden ser fotolizados o reaccionar con OH (reacción reversible)

- reacciones lentas
- solubles en agua
- sumidero en la PBL

Oxidación de CH₄

 $CH_4 + OH \cdot \rightarrow CH_3 \cdot + H_2O$ $CH_3 \cdot + O_2 + M \rightarrow CH_3O_2 \cdot + M$ $CH_3O_2 \cdot + NO \rightarrow CH_3O \cdot + NO_2$ $CH_3O \cdot + O_2 \rightarrow HCHO + HO_2 \cdot$ $HO_2 \cdot + NO \rightarrow OH \cdot + NO_2$ $2\{NO_2 + h\nu(+O_2) \rightarrow NO + O_3\}$

 $CH_4 + 4 O_2 + 2 h\nu \rightarrow HCHO + 2O_3 + H_2O$

Oxidación de HCHO

HCHO +
$$h\nu \rightarrow H_2$$
 + CO
 $\rightarrow H\cdot + HCO\cdot$
HCHO + OH $\cdot \rightarrow HCO \cdot + H_2O$
HCO $\cdot + O_2 \rightarrow HO_2 \cdot + CO$
 $H\cdot + O_2 \rightarrow HO_2 \cdot$
 $HO_2 \cdot + NO \rightarrow OH \cdot + NO_2$

DEPARTAMENTO DE GEOFISICA – FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS – UNIVERSIDAD DE CHILE

dgf

Terminación del ciclo

 $\begin{array}{l} \mathsf{OH}_{\bullet} + \mathsf{NO}_2 \to \mathsf{HNO}_3 \\ \mathsf{HO}_2^{\bullet} + \mathsf{HO}_2^{\bullet} \to \mathsf{H}_2\mathsf{O}_2 \end{array}$

also HO₂· + CH₃O₂· \rightarrow CH₃OOH + O₂

Metilo hidroperóxido (CH₃OOH) puede ser fotolizado o reaccionar con OH, lo que resulta en un tiempo de residencia promedio de ~ 2 días devolviendo radicales al sistema.

Oxidación de los COVs

 $RH + OH \cdot (+ O_2) \rightarrow RO_2 \cdot + H_2O$ $RO_2 \cdot + NO \rightarrow RO \cdot + NO_2$ $RO \cdot + O_2 \rightarrow R'CHO + HO_2 \cdot$ $RCHO + OH \cdot \rightarrow RC(O)O_2 \cdot + H2O$ $RC(O)O_2 \cdot + NO \rightarrow NO_2 + RO_2 \cdot + CO_2$

Simplificación

- La fotólisis de O_3 es la fuente más importante de OH.
- Oxidación de COVs con OH
 - Producción de peroxilos (RO_2 , HO_2), los que perturban el ciclo O_3/NOx .
 - Producción de carbonilos (aldehidos/ketones), los que siguen en la cadena de reacciones.
 - Reciclaje de OH.
- Terminación del ciclo por formación de ácido nítrico (HNO₃) (OH + NO₂ \rightarrow HNO₃) o peróxidos (H₂O₂, ROOH)

Qué son los RH?

Categoría de COV Sustancias

Alquinos

Aromáticos

Alcanos	CH4	Metano	
	CH3-CH3	Etano	
	CH3-CH2-CH3	Propano	
Alquenos	CH2=CH2 CH3-CH=CH2	Eteno Propeno	

/ muchos más ...

1-Buteno

2-Buteno

Acetileno

DEPARTAMENTO DE GEOFISICA – FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS – UNIVERSIDAD DE CHILE

Alquenos en forma de anillos

CH3-CH2-CH=CH2

CH3-CH=CH-CH3

HC≡CH

Problema práctico

Se emiten cientos de COVs a la atmósfera que a la vez están involucradas en miles de reacciones. No es posible representar todas las sustancias y reacciones explícitamente en un modelo Euleriano. Por lo tanto, las sustancias tienen que ser agregadas ("lumped") en clases y se tienen que formular las reacciones equivalentes para ellas. Hay dos métodos principales para esa agregación; basada en estructura y ii) basada en molécula.

La química inorgánica es suficientemente simple para ser tratada explícitamente.

Mecanismos químico generalizado

Inordanico						
IIIUI Galligu	In	n	'n	21	71	CO
		U	Y	aı		

Orgánico

 $NO + O_3 \rightarrow NO_2 + O_2$ $O_3 + h\nu \rightarrow O(^1D) + O_2$ $O(^1D) + H_2O \rightarrow 2 \text{ OH}$ $RH + OH \cdot (+ O_2) \rightarrow RO_2 \cdot + H_2O$ $RO_2 \cdot + NO \rightarrow RO \cdot + NO_2$ $RO \cdot + O_2 \rightarrow R'CHO + HO_2 \cdot$ $RCHO + OH \cdot \rightarrow RC(O)O_2 \cdot + H2O$ $RC(O)O_2 \cdot + NO \rightarrow NO_2 + RO_2 \cdot + CO_2$

 $NO_2 + hv \rightarrow NO + O$

 $0 + 0_2 \rightarrow 0_3$

Inorgánico

```
OH \cdot + NO_2 \rightarrow HNO_3
HO_2 \cdot + HO_2 \cdot \rightarrow H_2O_2
```

 HO_2 + $NO \rightarrow OH$ + NO_2

Agregación basada en molécula

Las clases de COV se basan en la similaridad de las reactividades y magnitud de las emisiones de las especies. Cada categoría de los COVs está representada por varias clases que cubre el rango de las reactividades.

La mayoría de las sustancias se encuentra dentro de una clase; algunas pocas con emisiones altas o una química muy particular se tratan de una manera explícita.

La ponderación de reactividad toma en cuenta la diferencia en reactividad dentro de una clase:

$$F = \frac{1 - \exp\left(-k_{OH \text{ Emit}} \times \int [OH]dt\right)}{1 - \exp\left(-k_{OH \text{ Model}} \times \int [OH]dt\right)}$$

with
$$\int [OH] dt = 110 \text{ ppt min}$$

Categoría de COV	Clase	Reactividad, <i>k</i> _{OH} (cm ³ molecule ⁻¹ s ⁻¹)	Clase de peroxilos
Alcanos	CH4	6.86 x 10 ⁻¹⁵	MO2
	ETH (Ethane)	2.57 x 10 ⁻¹³	ETHP
	HC3	2.2 x 10 ⁻¹²	HC3P
	HC5	4.77 x 10 ⁻¹²	HC5P
	HC8	1.08 x 10 ⁻¹¹	HC8P
Alquenos	OL2 (Ethene)	8.52 x 10 ⁻¹²	OL2P
	OLT (Terminal alkenes)	3.06 x 10 ⁻¹¹	OLTP
	OLI (Internal alkenes)	7.12 x 10 ⁻¹¹	OLIP
	ISO (Isoprene)	1.01 x 10 ⁻¹⁰	ISOP

Categoría de COV	Model species	Reactividad, <i>k_{OH}</i> (cm ³ molecule ⁻¹ s ⁻¹)	Clase de peroxilos
Aromáticos	TOL	5.96 x 10 ⁻¹²	TOLP
	XYL	2.40 x 10 ⁻¹¹	XYLP
	CSL	6.00 x 10 ⁻¹¹	-
Carbonilos	HCHO (Formaldehido)	1.00 x 10 ⁻¹¹	-
	ALD	1.69 x 10 ⁻¹¹	ACO3
	KET	6.87 x 10 ⁻¹³	KETP
	GLY	1.14 x 10 ⁻¹¹	-
	MGLY	1.72 x 10 ⁻¹¹	-
	DCB	5.04 x 10 ⁻¹¹	TCO3

CBM

Agregación basada en estructura

Las clases de COV se basan en la similaridad de la estructura de las especies. Cada categoría de los COVs está representada por una clase.

La mayoría de las sustancias se encuentra dentro de una clase; algunas pocas con emisiones altas o una química muy particular se tratan de una manera explícita.

Clases: PAR, OLE, ISOP, TOL, XYL, KETONES, ALD2, PAN, FORM, CO, NOx, HOx

CBM

Sustancia	Representación
n-Butano	4 PAR
2,2,4 Trimetilopentano	
Eteno	1 ETH
Propene	
trans-2-Buteno	2 ALD2
Tolueno	1 TOL
m-Xileno	1 XYL
Etilobenzeno	
Trimetilobenzeno	
Isopreno	ISO
Formaldehido	FORM
Acetaldehido	

CBM

Sustancia	Representación	
n-Butano	4 PAR	
2,2,4 Trimetilopentano	8 PAR	
Eteno	1 ETH	
Propene	1 OLE + 1 PAR	
trans-2-Buteno	2 ALD2	
Tolueno	1 TOL	
m-Xileno	1 XYL	
Etilobenzeno	1 TOL + 1 PAR	
Trimetilobenzeno	1 XYL + 1 PAR	
Isopreno	ISO	
Formaldehido	FORM	
Acetaldehido	ALD2	

Un solo radical peroxilo universal!

dgf

KPP

Kinetic PreProcessor

lee reacciones químicas y constantes de reacción de un archivo de entrada en formato ASCII y, además, genera automáticamente el código computacional para la integración química.

Ventajas

- menos tiempo en es desarrollo de código para mecanismos químicos.
- evita errores
- numéricamente eficiente
- flexible; permite actualización de mecanismos agregando nuevas reacciones.

Reference

- Damian et al., Computers and Chemical Engineering, 2002
- Sandu et al., Atmos. Environ., 2003
- Sandu and Sander, Atmos. Chem. Phys., 2006

Archivos de entrada para KPP

Archivo •.spc Definición de especies químicas

Archivo •.eqn Reacciones químicas en formato KPP

Archivo •.kpp Descripción del modelo, lenguaje computacional, precisión, método de integración (e.g. por ejemplo Rosenbrock solver) etc.

Archivo •.def Funciones definidos por usuario

Archivo radm2.eqn

#EQUATIONS {RADM2} {001:J01} NO2+hv=O3P+NO {002:J02} O3+hv=O1D{+O2} {003:J03} O3+hv=O3P{+O2}

: j(Pj_no2); : j(Pj_o31d); : j(Pj_o33p);

{ 22:001 } O3P+M{=O2}=O3 { 23:002 } O3P+NO2=NO{+O2}

2

: .20946e0*(C_M *6.00D-34*(TEMP/300.0)**(-2.3)); : ARR2(6.5D-12, -120.0_dp, TEMP);

{ 53:032 } HC3+OH=0.83 HC3P+0.17 HO2 +0.009 HCHO+0.075 ALD +0.025 KET+H2O

: ARR2(1.59D-11, 540.0_dp, TEMP);

DEPARTAMENTO DE GEOFISICA – FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS – UNIVERSIDAD DE CHILE